Object recognition based on image sequences by using inter-feature-line consistencies
نویسندگان
چکیده
An image sequence-based framework for appearance-based object recognition is proposed in this paper. Compared with the methods of using a single view for object recognition, inter-frame consistencies can be exploited in a sequence-based method, so that a better recognition performance can be achieved. We use the nearest feature line (NFL) method (IEEE Trans. Neural Networks 10 (1999) 439) to model each object. The NFL method is extended in this paper by further integrating motion-continuity information between features lines in a probabilistic framework. The associated recognition task is formulated as maximizing an a posteriori probability measure. The recognition problem is then further transformed to a shortest-path searching problem, and a dynamic-programming technique is used to solve it. ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملContours Extraction Using Line Detection and Zernike Moment
Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...
متن کاملCoupled-Contour Tracking through Non-orthogonal Projections and Fusion for Echocardiography
A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation p. 1 Enhancing Particle Filters Using Local Likelihood Sampling p. 16 A Boosted Particle Filter: Multitarget Detection and Tracking p. 28 Feature-Based Object Detection and Recognition I Simultaneous Object Recognition and Segmentation by Image Exploration p. 40 Recognition by Probabilistic Hypothesis Construction p. 55 Human Detec...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 37 شماره
صفحات -
تاریخ انتشار 2004